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A rapidly converging method for refining approximate atomic models is presented. It combines the 
conditional structure-factor least-squares procedure described by Waser [Acta Cryst. (1963). 16, 1091- 
1094] with the conjugate gradient method for solving linear systems [Hestenes & Stiefel, J. Res. Natl. 
Bur. Stand. (1952). 49, 409-436]. The method allows simultaneous variation of all of the structural 
parameters, although less than 1% of the derivative matrix need be calculated and stored for large 
systems and less than ~th  of the diffraction data accessible with Cu radiation need be used. Applications 
involving a 240 atom mineral and an 812 atom protein are mentioned. 

Introduction 

Approximate atomic models for large structures such 
as complex minerals and biological macromolecules 
may be obtained by various means. These methods in- 
clude consideration of sub-cell symmetry and/or direct 
methods in the case of complex minerals and iso- 
morphous replacement and anomalous dispersion tech- 
niques for macromolecules. The cost of conventional 
least-squares refinement of these trial structures, which 
may contain from several hundred to thousands of 
atoms, is in many cases prohibitive. A notable excep- 
tion is the refinement of rubredoxin (Watenpaugh, 
Sieker, Herriott & Jensen, 1973). In some instances, 
particularly with macromolecules, the intensity data 
may be too limited. Several alternative approaches have 
been reported. In the field of protein crystallography, 
a constrained-model refinement is often employed to 
give a best fit to an electron-density Fourier map that 
has been calculated with approximate phases (Dia- 
mond, 1971). This model may then be used to compute 
improved phases from which a new Fourier map may 
be calculated and the procedure is cycled (Deisenhofer 
& Steigemann, 1975). Difference Fourier map refine- 
ments have also been used (Watenpaugh et al., 1973), 
and combined with cycles of model idealization (Moews 
& Kretsinger, 1973; Freer, Alden, Carter & Kraut, 

1975). For some minerals, refinement of trial structures 
employing only distance restraints has proved valuable 
(Barrer & Villiger, 1969; Meier & Villiger, 1969). These 
minerals have been of such a size as to permit the 
models obtained from a least-squares refinement of the 
distances to be further refined by conventional least 
squares. 

An alternative to these techniques that simultaneous- 
ly employs both intensity data and distance restraints 
is presented in this paper. The method is an extension 
of the conditional structure-factor least-squares tech- 
nique described by Waser (1963). Subsidiary condi- 
tions in this technique are treated as observational 
equations; i.e., the sum of squared residuals to be min- 
imized is a function of not only observed and cal- 
culated intensities, but also ideal and calculated dis- 
tances. Other subsidiary conditions, such as those in- 
volving thermal parameters, may also be included. The 
extension of the technique utilizes specific properties 
of the conjugate gradient method for solving linear 
systems (Hestenes & Stiefel, 1952). Two important 
features affecting the efficiency of this method are the 
choice of the elements of the derivative matrix to be 
retained and the selection of a subset of intensity data. 
Although less than 1% of the derivative matrix needs 
to be calculated and stored for large systems, and as 
little as 1/64th of the intensity data accessible with Cu 
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radiation used, it is possible to vary simultaneously all 
of the structural parameters, retain known geometry, 
and obtain rapid, meaningful convergence. 

The procedure has been applied to two structures. 
Highly twinned terrestrial low tridymite with 240 atoms 
in space group P 1 has been refined to a conventional 
R of 6.4 %. The details of the structure will be reported 
elsewhere (Konnert & Appleman, in preparation). A 
carp calcium-binding protein that has been previously 
refined by other techniques (Moews & Kretsinger, 
1973) has been treated utilizing the 1370 data with a 
maximum d spacing of 5/~ and a minimum d spacing 
of 3 A. The atomic model used was the same as the 
initial model for the previous refinement. Two cycles 
of refinement lowered R for this data from 42 to 20 %. 
Each cycle required 65 min on a CDC 3800 which has 
a 100 K memory and a 0.9/zs cycle time. Further re- 
finement is in progress and will be reported elsewhere 
(Konnert, Hendrickson & Karle, in progress). 

The object of this paper is to describe the basic prin- 
ciples involved in the technique. Least-squares refine- 
ment with subsidiary conditions and the conjugate gra- 
dient method for solving linear systems will be reviewed 
first. Discussion of the derivative matrix elements to 
be stored, the selection and quantity of intensity data, 
and relative weighting will follow. Certain details of 
the refinements of tridymite and the protein will be 
mentioned. 

Least-squares refinement with subsidiary conditions 

The reader is referred to the paper by Waser (1963) 
on this subject. The topic will be discussed here briefly. 
The function minimized is of the form 

0=~ w,(IFol,-lFcl)Z+ ~ w t ( d ' ~ Z - d ~ , , )  2 (1) 
i l 

where i may range over all or just a portion of the in- 
tensity data, and l ranges over the distances to be re- 
strained. An ideal distance is designated as d~ and a 
calculated one as de. The weight assigned to an obser- 
vation is w. If desired, additional sums derived from 
observational equations of different types may be in- 
cluded. 

The normal equations are given in matrix notation. 

A h = k  (2) 

where A is the derivative matrix 

OFc, i OG.  i 
An, m =  ~_~ Wl - - - -  

3x. 3Xm 

+ 
l 8Xu (~Xm 

+ terms from other observational equations. (3) 

h. = desired shift in the nth parameter (4) 

~Fc, i 
k,,= ~ w~(IFol~-IFcl~) 

+ ~t w'(d~2-d2")2 
,Ox,, 

+terms from other observational equations. (5) 

The index l in equation (3) runs only over those re- 
straining equations that are functions of parameters n 
and m. 

Method of conjugate gradients (c-g method) for solving 
linear systems 

Only those portions of the paper by Hestenes & Stiefel 
(1952) which are presently used in the refinement tech- 
nique will be discussed. The c-g method is an algorithm 
for solving a system A h = k  of n linear equations in n 
unknowns. The solution is given in n iterative steps. 
However, since each iteration yields a better approxi- 
mation to the solution, acceptable values for the shifts 
are obtained in many fewer than n iterations. One starts 
with an initial estimate of the parameter shifts, x0 (all 
usually taken to be zero). Successive iterations deter- 
mine new estimates x0,,xln, x2,. • • of h,. For the cases 
of interest here the matrix A is symmetric and positive 
definite. Therefore, the following equations may be 
used to obtain the solution to h. They are equations 
3 : la to 3: l f i n  the paper by Hestenes & Stiefel. 

po- - ro- -k -Axo  (Xo arbitrary, usually--0) (6) 
Irll 2 

a , -  (p,, Ap~) (7) 

xt  + 1 = x~ + a tp t  (8) 
r~ + l = r~ - alApl (9) 

b l -  Ir~l 2 (10) 

Pi+l =r~+l +btpt (11) 

where (x,y) is the scalar product of x and y and Ix[ + 
(x,x) 1/2. An important feature of the c-g method is 
that the matrix A is retained unchanged during the 
procedure. Thus, only the non-zero elements need be 
stored and retrieved for the matrix multiplications, 
Ap~. The elements, A..,,, may be stored in any order 
as long as a scheme is devised for cataloging the in- 
dices. It should be emphasized that it is this property 
of the c-g method that makes possible an efficient con- 
ditional structure-factor least-squares refinement tech- 
nique without employing a full-matrix approach. 

Selection of elements of A to be retained 

The c-g method is ideally suited for efficiently storing 
all of the elements related to the restraining equations. 
For the refinement of a structure of N atoms and M 
distance restraints, the number of related elements in 
one half of the symmetric matrix that need to be stored 
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is 6 N + 9 M .  For the protein refinement involving 812 
atoms and 2030 distance restraints, the number of loca- 
tions required is 23142. Since M is roughly linear with 
N (typically M~_3N) ,  storage space required varies 
linearly with N. The question arises as to how many 
additional matrix elements are required in order to in- 
sure rapid convergence. Experience has indicated that 
only the elements involved in the restraining equations 
need be retained. All other matrix elements are rela- 
tively small and may be set equal to zero without 
hindering convergence. When all of the restraint-re- 
lated terms are retained in the matrix, the resulting 
shifts are correlated so as to maintain approximately 
the known geometry. To ensure rapid convergence, it 
is necessary to determine the optimum value by which 
to scale the computed shifts. A convenient method for 
doing this is to determine the value that minimizes the 
R value for a small sample selected randomly from the 
data set. In order to retain the desired geometry, all 
shifts should be modified by the same factor. 

Selection of data subset and weighting 

Restraining bond distances and angles greatly reduces 
the number of structural parameters to be determined 
by the intensity data. Correlation of the shifts, due to 
the make-up of the matrix, reduces the problem to one 
largely of torsions. For this reason, a much smaller in- 
tensity subset is required than would be the case with- 
out the restraints. 

In the initial stages of refinement, when positions 
are only approximately known, it is advantageous to 
use a sub~et of intensity data consisting of a low-angle 
shell of data. The lower-angle data correspond to larger 
interplanar spacings, and therefore, the derivatives are 
valid over a greater range of atomic coordinates. As 
the refinement proceeds, it is desirable to incorporate 
higher-angle data both for its greater resolution con- 
cerning coordinates and also for its power in deter- 
mining thermal parameters. A particularly useful way 
for choosing such a subset appears to be to include the 
data with both the largest and the smallest IEI values. 

The relative weighting among the distance restraints 
is determined by the degree to which the calculated 
values are to be forced to the ideal values. Whereas a 
distance discrepancy of only several hundredths of an 
A may be tolerable for covalently bonded distances, 
as much as several tenths of an A may be acceptable 
for the larger distances related to bond angles. Rela- 
tive weighting of the intensity data and the distance 
restraints must be monitored at each stage. 

One possible method for setting the relative weights 
is to equate a representative term from the first sum 
of equation (1) with a term in the second sum. Then, 
since Ad  2 ~" 2dAd, 

w,(AF,)Z=w~(Ad~)Z~'wt(2d~Ad,) 2. (12) 

If in the initial stages of refinement the average IAFI 
is 50 e, it might be reasonable to equate this IAF[ with 

a lad[ of 0.1 A, wi(50)2~_wz(2d~×O.1) 2. In this way 
equation (12) affords a basis for setting the relative 
weighting of intensities and distance restraints. 

Refinement of terrestrial low tridymite 

The crystals which were investigated appeared to be 
in the orthorhombic system (Gardner & Appleman, 
1974). During the course of the investigation, it be- 
came apparent that twinning is responsible for the or- 
thorhombic diffraction pattern and that the true sym- 
metry is lower. Because the refinement technique re- 
ported here requires only limited intensity data, it was 
possible to introduce a generalized twin capability into 
the refinement without prohibitively increasing the 
cost. Each intensity was expressed as the sum of four 
calculated intensities. 

I~(hkl) = k,I'~(hkl) + k fl'~(hkl) + k fl'~(hfcl) + kd'~(hkl)  . 

Intensities of the ith twin component are scaled with ki. 
The refinement was then carried out in the space 

group F1 with 240 atoms in the asymmetric unit. A 
point to note is that all four I~ components of each 
observation may refine to the same value if the true 
symmetry is orthorhombic. They may refine to pairs 
of equal values if the true symmetry is monoclinic, or 
they may, as turned out to be the case, all be different 
if the symmetry is triclinic. The centroid was con- 
strained with three Lagrangian multipliers, i.e., the 
sum of the shifts of the x coordinates was constrained 
to zero as were the sums of the y and z shifts. Four 
thermal factor parameters were used in describing the 
system. All Si atoms were given the same isotropic B 
which refined to 0.61 A 2. A single anisotropic ellipsoid 
was used to describe the oxygen atoms. The orienta- 
tion of this ellipsoid for each oxygen atom was fixed 
by the atomic environment of that atom. The refined 
values for the axes describing that ellipsoid are 0.60/~2 
for the axis fixed to be parallel to the line connecting 
the bridged Si atoms, 2.20 A z for the axis perpendicular 
to the Si-O-Si plane, and 1.65 A 2 for the third axis. 
Although four scale factors were included, all refined 
to the same value in agreement with the observed or- 
thorhombic diffraction pattern. With the inclusion of 
one isotropic extinction parameter, a total of 732 par- 
ameters were used to describe the model. The 320 Si-O 
distances were restrained to 1.61 A, the 480 O-O dis- 
tances of tetrahedra to 2.63 A and the 160 shortest 
Si-Si distances to 3.08 A. Of the 3280 diffraction data 
collected, a useful sub-set of data for initial refinement 
cycles were the ~ 600 data with sin 0/2 < 0.67. After 
several cycles with wi = 1/752 and wt =(6/d ' )  2, the con- 
ventional R was 11% for the 600 data that were re- 
fined and 13 % for all of the data. The full shifts ob- 
tained from the least-squares procedure were utilized 
although modification by an overall factor has been 
found at times to improve the convergence. Subsequent 
refinement employing higher-angle data and larger 
sub-sets reduced R to 6.4%. The average deviation 
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from ideal values was ~0.01 A for the Si-O distances 
and ~ 0.02 A for the others. The details of this struc- 
ture will be reported elsewhere (Konnert & Appleman, 
in preparation). 

Refinement of calcium-binding protein 

As previously stated the 1370 data with d spacing be- 
tween 5 and 3 A_ were used. Since the 812 atom model 
did not include solvent, the data with d spacing greater 
than 5 A~ were excluded. 2030 observational equations 
were employed to restrain distances related to bonded 
distances, bond angles, and planar groups. The model 
included 2436 positional parameters that were simul- 
taneously varied. The weights for equation (1) were 
wt = 1/752 for all reflections, wt = (6/d~) 2 for bonded dis- 
tances and wz=(4/d~) z for the others. The first cycle 
reduced the conventional R from 42 to 30 %. A scaling 
of 0-4 times the calculated shifts was found to be op- 
timal. The second cycle reduced R to 20% with 0.7 
scaling of the shifts. The average deviation from 'ideal' 
values was 0.04 A for the bonded distances and 0.06 A 
for the others. A single overall thermal factor was 
used. Further refinement is in progress involving re- 
strained thermal parameters and higher-angle data. 
Full details will be reported elsewhere (Konnert, Hend- 
rickson & Karle, in progress). 

The author wishes to thank Dr Jerome Karle for 
discussions and encouragement, Dr Wayne A. Hend- 
rickson for general discussions and suggestions con- 
cerning the c-g procedure, Dr Daniel E. Appleman 
for discussions, and Dr Robert Kretsinger for kindly 
affording the use of the protein data and for providing 
the initial coordinates. 
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